![]()
这项由厦门大学、华盛顿大学圣路易斯分校和中国人民大学联合开展的研究发表于2026年1月的arXiv预印本平台,论文编号为arXiv:2601.22628v1。有兴趣深入了解的读者可以通过该编号查询完整论文。
当我们学习新知识时,一个好老师会根据我们的能力水平调整教学难度,从简单的概念开始,逐步增加挑战性。然而,现在的人工智能系统在面对考试时,就像一个没有经验的学生,只能硬着头皮去解那些远超自己能力范围的难题。更糟糕的是,当它们试图通过自己的答案来学习时,往往会被错误的答案误导,就像一个人在黑暗中摸索,很容易走向错误的方向。
研究团队发现了这个问题的核心所在。当前的AI系统在面临困难数学题时,就像让一个刚学会加法的孩子去解微积分题一样,几乎注定会失败。更关键的是,这些系统缺乏一个像人类导师那样的引导者,能够为它们提供适合当前水平的练习题目。
为了解决这个问题,研究团队开发了一个名为TTCS(Test-Time Curriculum Synthesis for Self-Evolving)的创新框架。这个系统的巧妙之处在于,它就像为AI配备了两个角色:一个是出题老