过去一年,以人形机器人为代表的具身智能在实验室中的“场景理解”与“任务规划”上进展显著,但面对真实的工业产线任务时,往往面临“想得到但抓不准、算得出但跟不上”的困境。这背后,是长期横亘在实验室环境与真实应用场景之间的鸿沟:人形机器人在空间层面的度量失准与时间层面的响应迟滞。
![]()
基于百亿参数底座模型,优必选对其具身智能大模型Thinker进行了架构升级。本次升级聚焦“小参数、高性能、全开源”,旨在打造一个能为工业人形机器人提供快速反应与精准空间感知的下一代具身智能大脑,以应对动态工业场景的挑战。Thinker将作为智能基座,为优必选的群脑网络和协作智能体Co-Agent提供认知与决策支持,进而驱动单机自主与群体智能的协同进化。