![]()
如何让智能体进行复杂推理与工具调用?传统方法主要有两类:训练单一的大语言模型,使其同时承担思考与工具调用的任务;要么依赖静态提示词驱动的 training-free 智能体系统。
然而,前者在长链推理、工具多样化与动态环境反馈下训练常变得不稳定,缺乏可扩展性(scalability);后者则缺少学习与适应能力,难以应对复杂场景。
为此,斯坦福大学联合德州农工大学(Texas A&M)、加州大学圣地亚哥分校(UC San Diego)和 Lambda 的研究团队提出了 AgentFlow 框架,通过多个独立 Agent 模块协作,并且提出 Flow-GRPO 算法用于训练。在评测中,AgentFlow 在搜索、代理、数学与科学任务上均取得显著提升,即便是 3B 模型,也能超越 405B 的 Llama-3.1 和 200B 的 GPT-4o。
阅读全文